- Как правильно вычислить дистанцию, тормозной и остановочный путь автомобиля: формулы расчета
- Формулы расчета остановочного и тормозного пути, а также безопасной дистанции.
- Тормозной путь автомобиля
- Время и путь реакции водителя
- Остановочный путь автомобиля
- Дистанция
- Формула нахождения значений скорости, времени и расстояния
- Как же рассчитать скорость?
- Другие способы вычисления
- Способы вычисления расстояния и времени
- Видео
- Время, скорость, расстояние
- Расстояние
- Скорость
- Время
- Взаимосвязь скорости, времени, расстояния
Как правильно вычислить дистанцию, тормозной и остановочный путь автомобиля: формулы расчета
Формулы расчета остановочного и тормозного пути, а также безопасной дистанции.
В теоретическом экзамене есть вопрос о среднем времени реакции водителя, правильным ответом на который является 1 секунда. Также в билетах ГИБДД имеется вопрос, связанный с безопасной дистанцией. Есть вопросы, касаемые торможения. Но, как говорится, теория – это теория, которая, увы, с практикой, как правило, не имеет ничего общего.
Во-первых, то, что вы учили в билетах, является теорией, основанной на усредненных значениях и различных исследованиях. Фактически же время реакции водителя, остановочный и тормозной путь зависят от многих факторов и не могут быть точно рассчитаны для всех случаев. Тем не менее каждый водитель должен уметь рассчитывать эти параметры хотя бы приблизительно.
Тормозной путь автомобиля
Тормозной путь – это расстояние, которое будет пройдено автомобилем между контактом водителя с педалью тормоза и полной остановкой транспортного средства. Также стоит понимать различия между «нормальным торможением» и «экстренным торможением». В том числе не нужно забывать, что погодные условия влияют на тормозной путь. Если на дороге есть снег, тормозной путь, естественно, увеличивается.
Вот формула расчета тормозного пути:
Пример расчета: представим, что вы едете со скоростью 50 км/ч по городу и подъезжаете к пешеходному переходу, по которому идут дети. Расчет: (50 км/ч : 10) х (50 км/ч : 10) = 25 (метров). Таким образом, тормозной путь вашей машины составляет 25 метров. Поэтому вы должны учитывать длину тормозного пути, чтобы спокойно своевременно начать тормозить и остановиться перед пешеходным переходом.
Имейте в виду, что при экстренном торможении вы обычно нажимаете педаль тормоза полностью. В этом случае, как правило, тормозной путь сокращается вдвое. Вот формула тормозного пути при экстренном торможении:
Пример расчета: вы едете по городу со скоростью 50 км/ч, и вдруг на дорогу выкатывается мяч, за ним бежит ребенок. Вам нужна экстренная остановка автомобиля. Расчет: (50 км/ч : 10) х (50 км/ч : 10)/2 = 12,5 (метров). Тормозной путь вашей машины при экстренном торможении составит 12,5 метра.
Время и путь реакции водителя
Время реакции водителя – это время, которое пройдет с момента обнаружения водителем опасности на дороге до начала принятия мер по ее предотвращению.
Путь реакции водителя – это путь, который пройдет автомобиль с момента обнаружения водителем опасности на дороге до нажатия педали тормоза.
Вот формула расчета пути, который пройдет автомобиль в момент реакции водителя на опасность:
(Скорость в км / ч: 10) x 3 = путь реакции в метрах
Пример расчета: представим, что вы едете со скоростью 100 км/ч по проселочной дороге и внезапно на дорогу выбегает лось. Расчет: (100 км/ч : 10) х 3 = 30 (метров). То есть, после того как вы среагируете на опасность на дороге, ваша машина проедет примерно 30 метров. Добавьте к этому тормозной путь автомобиля.
Внимание: эти правила не являются научно правильными формулами и дают только приблизительное значение!
Остановочный путь автомобиля
Остановочный путь – это расстояние, пройденное транспортным средством с момента обнаружения водителем опасности на дороге до полной остановки машины.
Если вы хотите рассчитать остановочный путь автомобиля, вы должны добавить к тормозному пути автомобиля путь, пройденный за время реакции водителя. Вот как это можно сделать:
Первое значение в выражении – это путь реакции водителя, пройденный автомобилем, пока водитель реагирует на опасность на дороге. Второе выражение – это формула расчета тормозного пути. Для того чтобы вычислить остановочный путь транспортного средства, необходимо оба результата сложить вместе.
Пример расчета: вы едете на своей машине со скоростью 50 км/ч. Расчет: (50 км/ч : 10) х 3 = 15 метров пути проедет машина при реагировании на опасность на дороге (50 км/ч : 10) x (50 км/ч : 10) = 25 метров составит тормозной путь автомобиля. В итоге, сложив оба значения, получаем, что остановочный путь транспортного средства составит 40 метров.
Внимание: эти правила не являются научно правильными формулами и дают только приблизительное значение!
Дистанция
- Три длины автомобиля. Любой, кто путешествует в городских условиях, должен соблюдать дистанцию не менее 15 метров, или три длины автомобиля.
- Половина спидометра: для безопасной дистанции за пределами населенных пунктов обращайте внимание на скорость автомобиля. Для того чтобы вычислить безопасную дистанцию, разделите на 2 текущую скорость, которую показывает спидометр. В итоге вы получите дистанцию до других автомобилей в метрах. Пример: на скорости 70 км/ч вы должны держаться до впереди идущего автомобиля на расстоянии не менее 35 метров. Причем это касается сухого асфальта в летнее время.
- Двойное расстояние: в случае плохой видимости или плохих дорожных условий вы должны удвоить безопасную дистанцию.
Источник статьи: http://1gai.ru/baza-znaniy/sovety/523061-kak-pravilno-rasschitat-distanciju-tormoznoj-i-ostanovochnyj-put-avtomobilja.html
Формула нахождения значений скорости, времени и расстояния
С древних времен людей беспокоит мысль о достижении сверх скоростей, так же как не дают покоя раздумья о высотах, летательных аппаратах. На самом деле это два очень сильно связанных между собой понятия. То, насколько быстро можно добраться из одного пункта в другой на летательном аппарате в наше время, зависит полностью от скорости. Рассмотрим же способы и формулы расчета этого показателя, а также времени и расстояния.
Как же рассчитать скорость?
На самом деле, рассчитать ее можно несколькими способами:
- через формулу нахождения мощности;
- через дифференциальные исчисления;
- по угловым параметрам и так далее.
В этой статье рассматривается самый простой способ с самой простой формулой — нахождение значения этого параметра через расстояние и время. Кстати, в формулах дифференциального расчета также присутствуют эти показатели. Формула выглядит следующим образом:
- v — скорость объекта,
- S — расстояние, которое пройдено или должно быть пройдено объектом,
- t — время, за которое пройдено или должно быть пройдено расстояние.
Как видите, в формуле первого класса средней школы нет ничего сложного. Подставив соответствующие значения вместо буквенных обозначений, можно рассчитать быстроту передвижения объекта. Например, найдем значение скорости передвижения автомобиля, если он проехал 100 км за 1 час 30 минут. Сначала требуется перевести 1 час 30 минут в часы, так как в большинстве случаев единицей измерения рассматриваемого параметра считается километр в час (км/ч). Итак, 1 час 30 минут равно 1,5 часа, потому что 30 минут есть половина или 1/2 или 0,5 часа. Сложив вместе 1 час и 0,5 часа получим 1,5 часа.
Теперь нужно подставить имеющиеся значения вместо буквенных символов:
v=100 км/1,5 ч=66,66 км/ч
Здесь v=66,66 км/ч, и это значение очень приблизительное (незнающим людям об этом лучше прочитать в специальной литературе), S=100 км, t=1,5 ч.
Таким нехитрым способом можно найти скорость через время и расстояние.
А что делать, если нужно найти среднее значение? В принципе, вычисления, показанные выше, и дают в итоге результат среднего значение искомого нами параметра. Однако можно вывести и более точное значение, если известно, что на некоторых участках по сравнению с другими скорость объекта была непостоянной. Тогда пользуются таким видом формулы:
vср=(v1+v2+v3+. +vn)/n, где v1, v2, v3, vn — значения скоростей объекта на отдельных участках пути S, n — количество этих участков, vср — средняя скорость объекта на всем протяжении всего пути.
Эту же формулу можно записать иначе, используя путь и время, за которое объект прошел этот путь:
- vср=(S1+S2+. +Sn)/t, где vср — средняя скорость объекта на всем протяжении пути,
- S1, S2, Sn — отдельные неравномерные участки всего пути,
- t — общее время, за которое объект прошел все участки.
Можно записать использовать и такой вид вычислений:
- vср=S/(t1+t2+. +tn), где S — общее пройденное расстояние,
- t1, t2, tn — время прохождения отдельных участков расстояния S.
Но можно записать эту же формулу и в более точном варианте:
vср=S1/t1+S2/t2+. +Sn/tn, где S1/t1, S2/t2, Sn/tn — формулы вычисления скорости на каждом отдельном участке всего пути S.
Таким образом, очень легко найти искомый параметр, используя данные выше формулы. Они очень просты, и как уже было указано, используются в начальных классах. Более сложные формулы базируются на этих же формулах и на тех же принципах построения и вычисления, но имеют другой, более сложный вид, больше переменных и разных коэффициентов. Это нужно для получения наиболее точного значения показателей.
Другие способы вычисления
Существую и другие способы и методы, которые помогают вычислить значения рассматриваемого параметра. В пример можно привести формулу вычисления мощности:
N=F*v*cos α , где N — механическая мощность,
cos α — косинус угла между векторами силы и скорости.
Способы вычисления расстояния и времени
Можно и наоборот, зная скорость, найти значение расстояния или времени. Например:
S=v*t, где v — понятно что такое,
S — расстояние, которое требуется найти,
t — время, за которое объект прошел это расстояние.
Таким образом вычисляется значение расстояния.
Или вычисляем значение времени, за которое пройдено расстояние:
t=S/v, где v — все та же скорость,
S — расстояние, пройденный путь,
t — время, значение которого в данном случае нужно найти.
Для нахождения средних значений этих параметров существует довольно много представлений как данной формулы, так и всех остальных. Главное, знать основные правила перестановок и вычислений. А еще главнее знать сами формулы и лучше наизусть. Если же запомнить не получается, тогда лучше записывать. Это поможет, не сомневайтесь.
Пользуясь такими перестановками можно с легкостью найти время, расстояние и другие параметры, используя нужные, правильные способы их вычисления.
И это еще не предел!
Видео
В нашем видео вы найдете интересные примеры решения задач на нахождение скорости, времени и расстояния.
Источник статьи: http://liveposts.ru/articles/education-articles/matematika/formula-nahozhdeniya-znachenij-skorosti-vremeni-i-rasstoyaniya
Время, скорость, расстояние
О чем эта статья:
Расстояние
Мы постоянно ходим пешком и ездим на транспорте из одной точки в другую. Давайте узнаем, как можно посчитать это пройденное расстояние.
Расстояние — это длина от одного пункта до другого.
- Например: расстояние от дома до школы 3 км, от Москвы до Петербурга 705 км.
Расстояние обозначается латинской буквой S.
Единицы расстояния чаще всего выражаются в метрах (м), километрах (км).
Формула пути
Чтобы найти расстояние, нужно умножить скорость на время движения:
Скорость
Двигаться со скоростью черепахи — значит медленно, а со скоростью света — значит очень быстро. Сейчас узнаем, как пишется скорость в математике и как ее найти по формуле.
Скорость определяет путь, который преодолеет объект за единицу времени. Скорость обозначается латинской буквой v.
Проще говоря, скоростью называют расстояние, пройденное телом за единицу времени.
Впервые формулу скорости проходят на математике в 5 классе. Сейчас мы ее сформулируем и покажем, как ее использовать.
Формула скорости
Чтобы найти скорость, нужно разделить путь на время:
Показатели скорости чаще всего выражаются в м/сек; км/час.
Скорость сближения — это расстояние, которое прошли два объекта навстречу друг другу за единицу времени. Чтобы найти скорость сближения, нужно сложить скорости объектов.
Скорость удаления — это расстояние, которое увеличивается за единицу времени между двумя объектами, которые движутся в противоположных направлениях.
Чтобы найти скорость удаления, нужно сложить скорости объектов.
Чтобы найти скорость удаления при движении в одном направлении, нужно из большей скорости вычесть меньшую скорость.
Время
Время — самое дорогое, что у нас есть. Но кроме философии, у времени есть важная роль и в математике.
Время — это продолжительность каких-то действий, событий.
- Например: от метро до дома — 10 минут, от дома до дачи — 2 часа.
Время движения обозначается латинской буквой t.
Единицами времени могут быть секунды, минуты, часы.
Формула времени
Чтобы найти время, нужно разделить расстояние на скорость:
Эта формула пригодится, если нужно узнать за какое время тело преодолеет то или иное расстояние.
Взаимосвязь скорости, времени, расстояния
Скорость, время и расстояние связаны между собой очень крепко. Одно без другого даже сложно представить.
Если известны скорость и время движения, то можно найти расстояние. Оно равно скорости, умноженной на время: s = v × t.
Задачка 1. Мы вышли из дома и направились в гости в соседний двор. Мы дошли до соседнего двора за 15 минут. Фитнес браслет показал, что наша скорость была 50 метров в минуту. Какое расстояние мы прошли?
Если за одну минуту мы прошли 50 метров, то сколько таких пятьдесят метров мы пройдем за 10 минут? Умножив 50 метров на 15, мы определим расстояние от дома до магазина:
s = v × t = 50 × 15 = 750
Ответ: мы прошли 750 метров.
Если известно время и расстояние, то можно найти скорость: v = s : t.
Задачка 2. Двое школьников решили проверить, кто быстрее добежит от двора до спортплощадки. Расстояние от двора до магазина с мороженым 100 метров. Первый школьник добежал за 25 секунд. Второй за 50 секунд. Кто добежал быстрее?
Быстрее добежал тот, кто за 1 секунду пробежал большее расстояние. Говорят, что у него скорость движения больше. В этой задаче скорость школьников это расстояние, которое они пробегают за 1 секунду.
Чтобы найти скорость, нужно расстояние разделить на время движения. Найдем скорость первого школьника: для этого разделим 100 метров на время движения первого школьника, то есть на 25 секунд:
Если расстояние дано в метрах, а время движения в секундах, то скорость измеряется в метрах в секунду (м/с). Если расстояние дано в километрах, а время движения в часах, скорость измеряется в километрах в час (км/ч).
В нашей задаче расстояние дано в метрах, а время в секундах. Значит будем измерять скорость в метрах в секунду (м/с).
100 м : 25 с = 4 м/с
Так мы узнали, что скорость движения первого школьника 4 метра в секунду.
Теперь найдем скорость движения второго школьника. Для этого разделим расстояние на время движения второго школьника, то есть на 50 секунд:
Значит скорость движения второго школьника составляет 2 метра в секунду.
Сейчас можно сравнить скорости движения каждого школьника и узнать, кто добежал быстрее.
Скорость первого школьника больше. Значит он добежал до магазина с мороженым быстрее.
Ответ: первый школьник добежал быстрее.
Если известна скорость и расстояние, то можно найти время: t = s : v.
Задачка 3. От школы до стадиона 500 метров. Мы должны дойти до него пешком. Наша скорость будет 100 метров в минуту. За какое время мы дойдем до стадиона из школы?
Если за одну минуту мы будем проходить 100 метров, то сколько таких минут со ста метрами будет в 500 метрах?
Чтобы ответить на этот вопрос нужно 500 метров разделить на расстояние, которое мы будем проходить за одну минуту, то есть на 100. Тогда мы получим время, за которое мы дойдем до стадиона:
t = s : v = 500 : 100 = 5
Ответ: от школы до стадиона мы дойдем за 5 минут.
Специально для уроков математики можно распечатать или нарисовать самостоятельно такую таблицу, чтобы быстрее запомнить и применять формулы скорости, времени, расстояния.
Еще больше практики — в детской онлайн-школе Skysmart. Ученики решают примеры на интерактивной платформе: в игровом формате и с мгновенной автоматической проверкой. А еще отслеживают прогресс в личном кабинете и вдохновляются на новые свершения.
Запишите ребенка на бесплатный вводный урок математики: покажем, как все устроено и наметим индивидуальную программу, чтобы ребенок лучше учился в школе и не боялся контрольных.
Источник статьи: http://skysmart.ru/articles/mathematic/vremya-skorost-rasstoyanie